The Velluvial Matrix

Here’s one physician’s take on increasing complexity in medicine, given as a commencement speech at Stanford. I’ll let you jump over there if you want to find out the details about the “Velluvial matrix”, but it’s really just a device that lets him get at some big-picture ideas about the future of the field:

This is a deeper, more fundamental problem than we acknowledge. The truth is that the volume and complexity of the knowledge that we need to master has grown exponentially beyond our capacity as individuals. Worse, the fear is that the knowledge has grown beyond our capacity as a society. When we talk about the uncontrollable explosion in the costs of health care in America, for instance—about the reality that we in medicine are gradually bankrupting the country—we’re not talking about a problem rooted in economics. We’re talking about a problem rooted in scientific complexity.

This reminds me a bit of the PhD comic, which shows how grad school makes you dumber (a phenomenon closely related to the Dunning–Kruger effect). The more we learn about physiology and medicine, the more specialized each branch has to become, and the more likely that we are to make mistakes when crossing disciplinary boundaries:

Smith told me that to this day he remains deeply grateful to the people who saved him. But they missed one small step. They forgot to give him the vaccines that every patient who has his spleen removed requires, vaccines against three bacteria that the spleen usually fights off. Maybe the surgeons thought the critical-care doctors were going to give the vaccines, and maybe the critical-care doctors thought the primary-care physician was going to give them, and maybe the primary-care physician thought the surgeons already had. Or maybe they all forgot. Whatever the case, two years later, Duane Smith was on a beach vacation when he picked up an ordinary strep infection. Because he hadn’t had those vaccines, the infection spread rapidly throughout his body. He survived—but it cost him all his fingers and all his toes. It was, as he summed it up in his note, the worst vacation ever.

This is absolutely relevant to my last post, about intelligent systems that can make decisions. If designed properly, a machine will never miss a piece of evidence or forget to perform a step. (that’s a big “if”, but one we need to start tackling). Studies have already shown that simple checklists can dramatically reduce complications and deaths during surgery. Now we need to be designing systems that produce those checklists instantly and adapt to the specifics of the patient on the table.

This isn’t as sexy as the type of personalized medicine that relies on genetic screening but it’s probably even more important, in terms of the capacity to save lives in the short-term.

Watson, Jeopardy, and intelligent machines

Software firms and university scientists have produced question-answering systems for years, but these have mostly been limited to simply phrased questions. Nobody ever tackled “Jeopardy!” because experts assumed that even for the latest artificial intelligence, the game was simply too hard: the clues are too puzzling and allusive, and the breadth of trivia is too wide.

With Watson, I.B.M. claims it has cracked the problem — and aims to prove as much on national TV. The producers of “Jeopardy!” have agreed to pit Watson against some of the game’s best former players as early as this fall.

The New York Times profiles IBM’s Watson. It’s both a look at how far AI systems have come, and how far they still have to go. I’d be really interested in reading more about the underlying algorithms, so that I can get a better idea of where the major bottlenecks are.

It’s going to be amazing when we can apply machines like this to tasks like decision making in hospitals, or even create new, more intuitive, data mining interfaces. Hell, if we start cross-breeding Watson with something like ADAM, the robot that can form and test hypotheses, us graduate students may be made obsolete.

Well, someday…

|